自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

haoji007的博客

机器学习,深度学习,遥感图像应用

  • 博客(41)
  • 资源 (1)
  • 论坛 (2)
  • 收藏
  • 关注

转载 Fast R-CNN论文详解

&创新点规避R-CNN中冗余的特征提取操作,只对整张图像全区域进行一次特征提取;用RoI pooling层取代最后一层max pooling层,同时引入建议框信息,提取相应建议框特征;Fast R-CNN网络末尾采用并行的不同的全连接层,可同时输出分类结果和窗口回归结果,实现了end-to-end的多任务训练【建议框提取除外】,也不需要额外的特征存储空间【R

2016-12-29 00:22:28 588

转载 Caffe学习系列(17):模型各层数据和参数可视化

cifar10的各层数据和参数可视化 先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化。In [1]:#加载必要的库import numpy as npimport matplotlib.pyplot as plt%matplotl

2016-12-29 00:05:05 851

转载 Faster rcnn相关文章研究

一、效果简介1  多类目标检测,基于VOC2012数据集    MAC :The number of adds andmultiplications    mAP:Mean average precision    GPU:NVIDIA Titan X  我们目前的人脸检测模型是:Faster R-CNN + VGG_CNN_M_10

2016-12-29 00:04:41 503

转载 【目标检测大集合】R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记

R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记转自:https://ask.julyedu.com/question/7490R-FCNpaper:https://arxiv.org/abs/1605.06409作者代码:https://github.com/daijifeng001/R-FCN #matlab版本这里使用pyt

2016-12-29 00:04:23 6228 2

转载 在matlab中实现PCA算法

function [V,S,E]=princa(X)[m,n]=size(X); %计算矩阵的行m和列n %-------------第一步:标准化矩阵-----------------%mv=mean(X); %计算各变量的均值st=std(X); %计算各变量的标准差X=(X-repmat(mv,m,1))./repmat(st,m,1); %标准化矩阵X %-

2016-12-29 00:04:07 4436

转载 利用matlab求图像均值和方差的几种方法

一、求均值% 求一副灰度图像的均值close all;clear;clc;i=imread('d:/lena.jpg'); %载入真彩色图像i=rgb2gray(i); %转换为灰度图i=double(i); %将uint8型转换为double型,否则不能计算统计量% avg1=mean(i,1); %列向量均值% avg2=mean(i,2); %行向量均值% a

2016-12-29 00:03:50 37125

转载 Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model。这个model将图片分为1000类,应该是目前为止最好的图片分类model了。假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张,而一般深度学习都要求样本量在1万以上,因此训练出来的model精度太低,根本用不上,那怎么办呢?那就用caffe团队提供给我们的model吧。因为训练好的m

2016-12-29 00:03:32 1295

转载 Caffe学习系列(22):caffe图形化操作工具digits运行实例

经过前面的操作,我们就把数据准备好了。一、训练一个model右击右边Models模块的” Images" 按钮 ,选择“classification"在打开页面右下角可以看到,系统提供了一个caffe model,分别为LeNet, AlexNet, GoogLeNet, 如果使用这三个模型,则所有参数都已经设置好了,就不用再设置了。在下面,系统为我们列举出了本机所带的显卡,我

2016-12-29 00:03:24 328

转载 Caffe学习系列(21):caffe图形化操作工具digits的安装与运行

经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化。如果还没有学会的,请自行细细阅读: caffe学习系列:http://www.cnblogs.com/denny402/tag/caffe/也许有人会觉得比较复杂。确实,对于一个使用惯了windows视窗操作的用户来说,各种命令就要了人命,甚至会非常抵触命令

2016-12-29 00:03:15 254

转载 Caffe学习系列(20):用训练好的caffemodel来进行分类

caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序实际上是一样的。开发caffe的贾大牛团队,利用imagenet图片和caffenet模型训练好了

2016-12-29 00:03:06 393

转载 Caffe学习系列(19): 绘制loss和accuracy曲线

如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制。 In [1]:#加载必要的库import numpy as npimport matplotlib.pyplot as plt%matplotlib inlineimport sys,os,caffe#设置当前目录caffe_root = '/home/bnu/c

2016-12-29 00:03:00 378

转载 Caffe学习系列(18): 绘制网络模型

python/draw_net.py, 这个文件,就是用来绘制网络模型的。也就是将网络模型由prototxt变成一张图片。在绘制之前,需要先安装两个库1、安装GraphViz# sudo apt-get install GraphViz注意,这里用的是apt-get来安装,而不是pip.2 、安装pydot# sudo pip install pydot

2016-12-29 00:02:51 275

转载 Caffe学习系列(16):caffemodel可视化

通过前面的学习,我们已经能够正常训练各种数据了。设置好solver.prototxt后,我们可以把训练好的模型保存起来,如lenet_iter_10000.caffemodel。 训练多少次就自动保存一下,这个是通过snapshot进行设置的,保存文件的路径及文件名前缀是由snapshot_prefix来设定的。这个文件里面存放的就是各层的参数,即net.params,里面没有数据(net.blo

2016-12-28 21:01:30 635

转载 Caffe学习系列(15):计算图片数据的均值

图片减去均值后,再进行训练和测试,会提高速度和精度。因此,一般在各种模型中都会有这个操作。那么这个均值怎么来的呢,实际上就是计算所有训练样本的平均值,计算出来后,保存为一个均值文件,在以后的测试中,就可以直接使用这个均值来相减,而不需要对测试图片重新计算。一、二进制格式的均值计算caffe中使用的均值数据格式是binaryproto, 作者为我们提供了一个计算均值的文件compute_

2016-12-28 21:01:18 495

转载 Caffe学习系列(14):初识数据可视化

首先将caffe的根目录作为当前目录,然后加载caffe程序自带的小猫图片,并显示。图片大小为360x480,三通道In [1]:import numpy as npimport matplotlib.pyplot as plt%matplotlib inlineimport caffecaffe_root='/home/xxx/caffe/'im

2016-12-28 21:00:50 423

转载 Caffe学习系列(13):数据可视化环境(python接口)配置 jupyter notebook

caffe程序是由c++语言写的,本身是不带数据可视化功能的。只能借助其它的库或接口,如opencv, python或matlab。大部分人使用python接口来进行可视化,因为python出了个比较强大的东西:ipython notebook, 现在的最新版本改名叫jupyter notebook,它能将python代码搬到浏览器上去执行,以富文本方式显示,使得整个工作可以以笔记的形式展现、存储

2016-12-28 21:00:33 2892

转载 Caffe学习系列(12):训练和测试自己的图片

学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中。因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程。一、准备数据有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练。但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(

2016-12-28 20:59:53 301

转载 Caffe学习系列(11):图像数据转换成db(leveldb/lmdb)文件

在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致。而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件?在caffe中,作者为我们提供了这样一个文件:convert_imageset.cpp,存

2016-12-28 20:59:27 198

转载 Caffe学习系列(10):命令行解析

caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文件都

2016-12-28 20:59:08 216

转载 Caffe学习系列(9):运行caffe自带的两个简单例子

为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载。但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了。注意:在caffe中运行所有程序,都必须在根目录下进行,否则会出错1、mnist实例mnist是一个手写数字库,由DL大牛Yan LeCun进行维护。mnist最初用于支票上的手写数字识别, 现在

2016-12-28 20:58:53 332

转载 Caffe学习系列(8):solver优化方法

上文提到,到目前为止,caffe总共提供了六种优化方法:Stochastic Gradient Descent (type: "SGD"),AdaDelta (type: "AdaDelta"),Adaptive Gradient (type: "AdaGrad"),Adam (type: "Adam"),Nesterov’s Accelerated Gradient (type: "Ne

2016-12-28 20:58:41 194

转载 Caffe学习系列(7):solver及其配置

solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为# caffe train --solver=*_slover.prototxt在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)

2016-12-28 20:58:17 205

转载 Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写

深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。1、blobBlobs封装了运行时的数据信息,

2016-12-28 20:58:07 230

转载 Caffe学习系列(5):其它常用层及参数

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。1、softmax-losssoftmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。Logist

2016-12-28 20:57:47 183

转载 Caffe学习系列(4):激活层(Activiation Layers)及参数

在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。输入:n*c*h*w输出:n*c*h*w常用的激活函数有sigmoid, tanh,relu等,下面分别介绍。1、Sigmoid对每个输入数据,利用sig

2016-12-28 20:57:30 193

转载 Caffe学习系列(3):视觉层(Vision Layers)及参数

所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。1、Convolution层:

2016-12-28 20:57:26 296

转载 Caffe学习系列(2):数据层及参数

要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行。

2016-12-28 20:57:11 253

转载 Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn

一、版本linux系统:Ubuntu 14.04 (64位)显卡:Nvidia K20ccuda: cuda_7.5.18_linux.runcudnn: cudnn-7.0-linux-x64-v4.0-rc二、下载Ubuntu 14.04下载地址:http://www.ubuntu.com/download/desktop (64bit)cuda7.5下载地址:ht

2016-12-28 20:56:52 340

转载 图像处理中滤波(filtering)与卷积(convolution)的区别

图像处理中滤波和卷积是常用到的操作。很多人认为卷积就是滤波,两者并无区别,其实不然。两者在原理上相似,但是在实现的细节上存在一些区别。这篇博文主要叙述这两者之间的区别。1、滤波简单来说,滤波操作就是图像对应像素与掩膜(mask)的乘积之和。比如有一张图片和一个掩膜,如下图:那么像素(i,j)的滤波后结果可以根据以下公式计算:其中G

2016-12-28 18:53:39 25873 3

转载 ipython notebook使用教程

最近在使用jupyter notebook,感觉非常舒爽。特别是在本地的浏览器上就可以利用jupyter实现在服务器上编程,更是爽歪歪了。关于如何实现本地浏览器上进行服务器上编程参照了这篇文章:Ubuntu环境下Anaconda安装TensorFlow并配置Jupyter远程访问.另外,亲测发现ipython运行速度比使用pycharm快(这是为什么呢?)***

2016-12-28 18:39:51 1193

转载 【DBN】Deep Belief Network简介

1. 多层神经网络存在的问题    常用的神经网络模型, 一般只包含输入层, 输出层和一个隐藏层:         理论上来说, 隐藏层越多, 模型的表达能力应该越强。但是, 当隐藏层数多于一层时, 如果我们使用随机值来初始化权重, 使用梯度下降来优化参数就会出现许多问题[1]:如果初始权重值设置的过大, 则训练过程中权重值会落入局部最小值(而不是全局最小值)。如果

2016-12-28 18:39:24 332

转载 caffe中网络结构参数详解

prototxt文件是caffe的配置文件,用于保存CNN的网络结构和配置信息。prototxt文件有三种,分别是deploy.prototxt,train_val.prototxt和solver.prototxt。1. solver.prototxtsolver.prototxt是caffe的配置文件。里面定义了网络训练时候的各种参数,比如学习率、权重衰减、迭代次数等等。下面详细

2016-12-28 18:38:57 5802

转载 caffe的python接口学习(8):caffemodel中的参数及特征的抽取

如果用公式  y=f(wx+b)来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项。f是激活函数,有sigmoid、relu等。x就是输入的数据。数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值。我们运行代码:deploy=root + 'mnist/deploy.prototxt

2016-12-19 01:23:20 741

转载 caffe的python接口学习(7):绘制loss和accuracy曲线

使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来。因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与m

2016-12-19 01:22:30 886

转载 caffe的python接口学习(6):用训练好的模型(caffemodel)来分类新的图片

经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测。我们从mnist数据集的test集中随便找一张图片,用来进行实验。#coding=utf-8import caffeimport numpy as nproot='/home/xxx/' #根目录d

2016-12-19 01:21:29 296

转载 caffe的python接口学习(5):生成deploy文件

如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也。deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层。这里我们采用代码的方式来自动生成该文件,以mnist为例。deploy.py# -*- coding: utf-

2016-12-19 01:20:56 327

转载 caffe的python接口学习(4):mnist实例---手写数字识别

深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了。由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文:数据层及参数视觉层及参数solver配置文件及参数一、数据准备官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片。因此有些人并不知道该怎么办。在此我将mnist数据进行了转化,

2016-12-19 01:20:03 442

转载 caffe的python接口学习(3):训练模型(training)

如果不进行可视化,只想得到一个最终的训练model, 那么代码非常简单,如下 :import caffecaffe.set_device(0)caffe.set_mode_gpu()solver = caffe.SGDSolver('/home/xxx/data/solver.prototxt')solver.solve()

2016-12-19 01:19:10 198

转载 caffe的python接口学习(2):生成solver文件

caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下:base_lr: 0.001display: 782gamma: 0.1lr_policy: “step”max_iter: 78200momentum: 0.9snapshot: 7820snapshot_prefix: “snapshot”solv

2016-12-19 01:18:34 223

转载 caffe的python接口学习(1):生成配置文件

caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现。caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更加深入。半年前,我在学习CAFFE的时候,为了加深理解,因此写下了随笔,有了一系列的caffe学习文章。半年过去,很多人问到关于python接口和可视化的一些问题,现在有点空闲时间,就再次写下一些

2016-12-19 01:17:03 323

分布式计算研究进展综述

分布式计算研究进展综述分布式计算研究进展综述分布式计算研究进展综述分布式计算研究进展综述

2008-11-01

haoji007的留言板

发表于 2020-01-02 最后回复 2020-04-24

各位大侠不能不救啊~~~求解~~caffe编译出问题了!

发表于 2017-08-03 最后回复 2017-10-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除